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ABSTRACT 

Gastrointestinal nematodes (GIN) can severely affect the performance of ruminant 

animals and may lead to an animal’s death in a severe, untreated infection. Zoological parks, 

which have used anthelmintic drugs for treatment of GIN, are now seeing evidence of drug 

resistant parasites (Garretson et al., 2009). Duddingtonia flagrans, a nematophagous fungus, has 

shown a reduction in larvae of coprocultures of exotic ruminants through feed administration at 

Disney’sâ Animal Kingdom Lodge (DAKL) and has potential to biologically control forage 

larvae (Terry, 2013). This study evaluated the effectiveness of Duddingtonia flagrans, 

administered to exotic ruminant hoofstock at a daily dose of 30,000 chlamydospores per kg of 

BW with standard feed, on reducing fecal egg count (FEC), larvae development and survival in 

feces and level of forage larvae availability for December, 2015 – May, 2016 (peak larvae 

season) at DAKL. Reticulated giraffe, scimitar-horned oryx and roan antelope were kept on 

control savannah, Sunset (n=8), and treatment savannahs, Arusha (n=6) and Uzima (n=5). Fecal 

egg counts were monitored throughout the study and individual coprocultures were used to 

determine in vitro development and survival of larvae. Forage samples were collected every 

month to survey the larval population available to animals in each savannah. This study showed 

that D. flagrans did not significantly reduce (P>0.05) FEC over time but showed a steady 

decreasing trend with treatments. The percent development and survival of larvae in 

coprocultures were reduced (P<0.05) to less than 2% for treatments, while the control levels 

remained above 30%. The number of larvae collected from forages, especially Haemonchus 

contortus, were decreased in savannahs in which animals given the fungus. Duddingtonia 

flagrans shows potential as an effective means at controlling GIN for animals in zoological 

captivity.  
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CHAPTER 1  
INTRODUCTION 

Gastrointestinal nematodes (GIN) have a worldwide distribution and are commonly 

recognized for their constraints on ruminant animals, due to their host-parasitic relationship. 

These nematodes are parasitic to hosts by taking nutrients from hosts while residing in the hosts’ 

gastrointestinal tract. Some common GIN found in ruminants are trichotrongylid nematodes, 

including Haemonchus spp., Teladorsagia spp., Trichostrongylus spp., Cooperia spp., and 

Nematodirus spp. Frequently, ruminants are known to be infected with multiple species of GIN, 

known as polyparasitism. Other helminth infections can concurrently be present in the host’s 

intestines, demonstrating similar symptoms (Kassai, 1999). Nutrient loss of captive ruminants 

can pose a financial threat for producers and zoo facilities because of the pathology caused by 

these parasites. Haemonchus contortus is a blood-feeding GIN that causes the most impairment 

of ruminants. An animal with H. contortus infection shows symptoms such as anemia, bottlejaw 

(edema), diarrhea and weight loss. If the susceptible animal is left untreated then death may 

occur (Hansen and Perry, 1994). When compared to captive ruminants, wild ruminants have 

fewer problems with GIN due to the larger environments in which they live, encountering fewer 

larvae. Captive domestic and exotic ruminants are kept in enclosed spaces, leading to constant 

pasture infectivity (Ibrahim et al., 2012). 

For many years, animal keepers have treated animals harboring GIN by administering 

anthelmintics. Drug administration showed remarkable improvement in animals but later a 

decline in treatment became evident. The susceptible worms were no longer available on 

pastures and only drug resistant worms remained. Resistant GIN quickly became an issue, thus 

enclosure and animal management had to be reevaluated. With knowledge that only a few 

animals harbored the majority of the worm population, animals with high fecal egg counts (FEC) 
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of trichostrongyle-type eggs were dewormed instead of the entire stock of animals. Deworming 

only infected animals allowed a population of susceptible larvae to remain in enclosures. Other 

methods, such as burning pastures, rotating animals to different pastures, and proper drug storage 

and administration were incorporated into practices. These practices have helped reduce the 

chances of drug resistance but there are fewer effective drugs available on the market. 

Drug resistance is a sizeable issue worldwide that has led the search for alternative means 

of controlling GIN. Taylor et al. (2007) states that anthelminthic resistance has been reported in 

sheep and goats (Haemonchus spp., Trichostrongylus spp., and Teladorsagia spp.), and horses 

(small strongyles). Benzimidazoles were primarily found to have resistance but additional broad-

spectrum classes of drugs have been identified, 1-BZ (benzimidazoles and probenzimidazoles), 

2-LM (levamisole/morantel) and 3-AV (avermectins/milbenmycins), and in some cases, the 

narrow spectrum drug closantel. Resistance is more prevalent in the Southern hemisphere 

(Australia, Africa, South America and New Zealand). Resistance rates are different for these 

areas due to the refugia, which is the population of parasites that have not been exposed to a 

drug. Resistant worms are selected for with further drug administration, which makes 

regenerating a refugia population difficult with drug withdraw, if not permanent (Taylor et al., 

2007). Research has shown the potential of substances such as inorganics, naturally occurring 

compounds and other living organisms to combat this parasitic problem seen in production 

animals. One particular agent, nematode trapping fungus Duddingtonia flagrans, has shown 

promising control properties for small ruminants but further investigations were discouraged by 

low commercial availability. However, recent interest has prompted further investigations for use 

in small ruminant production and zoological parks (Terrill et al., 2012). 
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Terry (2013) evaluated the efficacy of Duddingtonia flagrans as a biological control of 

drug resistant GIN of exotic ruminant hoofstock at Disney’s® Animal Kingdom Lodge. A 

reduction in GIN larvae in coprocultures was seen for animals administered as low as 30,000 

chlamydospores/kg of body weight (BW) for up to 8 weeks. As D. flagrans showed promise as a 

way to control GIN for zoo captive animals, further investigation is needed to evaluate long term 

control of forage GIN larval populations (Terry, 2013). 

The purpose of this study was to evaluate the effects of the daily administration of 30,000 

chlamydospores/kg of body weight (BW) of D. flagrans to exotic ruminant hoofstock on 

savannahs at Disney’s® Animal Kingdom Lodge on FEC, the development and survivability of 

fecal larvae and larvae available on forage. If D. flagrans fed daily at a dose of 30,000 

chlamydospores/kg of BW can show a reduction of FEC, a decrease of larvae in feces and a 

decrease the number of available on forage, then larvae available on forage should significantly 

decrease over time; yet, larvae available on forage should not significantly change when animals 

do not receive chlamydospores added to supplement feed. The information from this study can 

be used in the investigation of nonchemical control of GIN of ruminant hoofstock in captivity.  
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CHAPTER 2  
LITERATURE REVIEW 

2.1 Captive and Wild Ruminant Hoofstock 

Ruminant livestock are used widely as a food source and human populations have 

continued to increase in numbers as countries develop, increasing the need for more livestock to 

feed families. In addition, land cultivation increases the risk of wild life endangerment. As more 

people become aware of exotic animals that are at risk of endangerment, the desire to preserve 

them also rises. Prevention of species endangerment and animal education has led to an 

expansion of zoos. Gastrointestinal nematode parasites are traditionally found in livestock, 

playing a role in reducing weight gain, increasing weight loss, and potentially causing animal 

loss. Similar parasites found in livestock used for food are also seen in exotic ruminant 

hoofstock, lending the same problems to zoos. Parasite monitoring is also important in 

zoological settings where mixed species are kept together due to the ability of GIN crossing 

species lines (Miller and Fowler, 2012). Gastrointestinal nematode parasite control may be vital 

to the stability of zoo operations, as monetary funding is influenced by the spectators’ 

expectations of healthy animals. 

2.2 Ruminant Trichostrongyle-Type Parasites 

Helminths are “worm-like parasites” divided into three groups, Trematodes (flukes), 

Cestodes (tapeworms) and Nematodes (roundworms). Helminths have a life cycle of larval 

(juvenile), adult and egg stages, where generally most helminths’ eggs are shed in a host’s fecal 

matter (Castro, 1996). Belonging to Phylum Nematoda, Family Trichostrongyloidea is 

distributed worldwide and is the most collective group of helminths found in grazing ruminants. 

Temperate zones show more prevalence of Teladorsagia spp. and Nematodirus spp., while tropic 
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and subtropic areas dominantly include Haemonchus spp., Mecistocirrus spp., Cooperia spp., 

and Trichostrongylus spp. (Kassai, 1999). 

Haemonchus contortus, the barber’s pole worm, is a blood-feeding GIN that infects 

ruminants. These worms live in the abomasum of ruminant animals (Kassai, 1999). The adult 

worms cut the abomasal mucosa with their buccal lancet to feed on blood. This parasitic 

behavior leads to symptoms such as anemia, dehydration, edema, weight loss and reduced weight 

gain, and possibly death (Morgan and Hawkins, 1953). This is problematic for producers because 

proper weights for reproduction, wool/hair production, or meat production may be compromised. 

Zoo facilities may also encounter problems from ruminant animal infections by having ill-

appearing animals that have to be removed from the exhibit. The ultimate worst situation is 

fatality of the animal, leading to major financial losses for both parties. 

2.3 Trichostrongylid Nematode Life Cycle 

The life cycle of trichostroylids begins with an infected ruminant shedding eggs in its 

feces. The oval eggs are thin-shelled, colorless and medium-sized (60-110 µm), with the 

exception of Nematodirus spp. eggs occurring twice the size as other trichostrongyle-type eggs 

(130-260 µm) (Kassai, 1999). Humidity and temperature are important constituents for 

development. Optimal temperature and humidity ranges are 18-26°C and 80-100%. Egg to L3 

development will not occur below 10°C, but L3 can survive below 5°C with low metabolism. 

When humidity is low, feces or soil can contain enough humidity to allow egg development 

(Taylor et al., 2007). If environmental conditions are appropriate for development, the first stage 

larva (L1) will emerge from an egg, within 24 hours (Kassai, 1999). As an L1 develops, the L1 

molts to become the second stage larva (L2), shedding the cuticle in the process. A second molt 

with cuticle retention allows an L2 to develop into the infective stage, the third stage larva (L3). 



 6 

In addition to embryonated eggs, this double cuticle larval stage can survive extreme 

environments of freezing or desiccation, yet L1 and L2 are vulnerable. The infective L3 are 

stimulated by light and temperature, and requires a water droplet to move up a blade of grass to 

be ingested by the animal. After ingestion, an L3 exsheaths the surrounding cuticle inside the 

animal, based on new environmental conditions provided by the host (Taylor et al., 2007). The 

exsheathed L3 travels to the site of infection through the gastrointestinal tract and molts to fourth 

larval stage (L4). A final molt of an L4 gives rise to the sexually mature adult which then can 

sexually reproduce. The oviparous female will lay fertile eggs that will exit with the feces. The 

prepatent period, time of infection to eggs present in feces, is approximately 2-3 weeks. Larvae 

can arrest development in the host, called hypobiosis, when conditions outside the host are not 

favorable. Development will resume spontaneously when conditions are favorable. Ability to 

arrest and resume development in the host is epidemiologically important, as worms can survive 

during harsh conditions and contamination rate is increased when survival rate is highest (Kassai, 

1999). 

2.4 Anthelmintic Drugs 

Caretakers who market ruminants rely heavily on drugs for GIN control and a large sum 

of funds goes toward purchasing anthelmintics. An ideal anthelmintic drug has the following 

standards: all life stages are affected, controls more than one genera, is safe for the host, can be 

readily administered, and cost effective, especially profitable. Two uses of anthelmintics are 

prevention and treatment. Drugs are orally administered, by drench or  

feed additive, or given as a subcutaneous injection. In addition, compounds that are injected into 

the rumen for slow dose release and water additives are available on the market (Taylor et al., 

2007). 
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2.4.1 Benzimidazoles 

The first class of broad spectrum anthelmintics was documented in 1961 as 

benzimidazoles (BZ) (Brown et al., 1961). Merck trademarked the first derivative of 

benzimidazoles from N-arylamides as thiabendazol in 1965 (Grenda et al., 1965). Additional 

drugs and prodrug compounds in this class are albendazole, febantel, fenbendazole, 

flubendazole, mebendazole, netobimin, oxfendazole, oxibendazole, parabendazole and 

ricobendazole. Drugs in this class have shown effectiveness against GIN adults, developing 

larvae and arrested larvae (Campbell, 1990). Benzimidazoles work on GIN by blocking the 

transport of intestinal cells’ secretory granules and eliminating microtubules, without affecting 

microtubules of the host (Borgers et al., 1975). Routes of administration for control with 

benzimidazoles have evolved over time. Initially single doses were given in the form of drenches 

and boluses and later given in long term administration with smaller doses over time by 

incorporation of the drug in feed and feed blocks. Additional forms of administration were 

developed to introduce the drug with a syringe directly into the rumen and in time-release 

capsules (Campbell, 1990). 

2.4.2 Imidazothiazoles 

The first imidazothiazole, tetramisole, was introduced in 1966 (Thienpont et al., 1966). 

Later one of its isomers, levamisole, was isolated and became a widely used anthelmintic drug 

(Bullock et al., 1968). This group of drugs acts as an agonist to nicotinic acetylcholine receptors 

found on muscle cells, causing an increased conductance and depolarization, leading to the 

paralysis of the nematode (Harrow and Gration, 1985). This class has been reported to be 

effective against adults and immature stages of important GIN (Kistner and Wyse, 1975; 

Callinan and Barton, 1979; Armour, 1983). Levamisole has a narrow therapeutic window due to 
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its nicotinic action and should be carefully administered when groups of animals with varying 

weights are being treated (McKellar and Jackson, 2004).  

2.4.3 Macrocyclic Lactones Derivatives 

A group of chemical derivatives of macrocyclic lactones known as avermectins were 

identified to have great anthelmintic effects in 1979. These compounds are created by an 

actinomycete from a soil sample in Japan (Burg et al., 1979). Ivermectin, a widely used 

anthelmintic was introduced by Merck in 1980 (Chabala et al., 1980). The ivermectin derivative 

paralyzes nematodes by the disturbance of the interneuron’s communication to the dendritic 

excitatory motorneurons (Kass et al., 1980). The pharynx is the target in nematodes for 

ivermectin by inhibition of g-Aminobutyric acid (GABA) and glutamic acid, which affects their 

feeding (Brownlee et al., 1997). Avermectins work on inhibited stage larvae and adults (Egerton 

et al., 1979). 

2.4.4 Amino-acetonitrile derivatives 

Over time there was a focus of producing new drug components for their anthelmintic 

properties. Previously described as “fungicides, antibacterials, and insecticides”, amino-

acetonitrile derivatives (AADs) were not valued for GIN control until a study on mice showed 

the control of H. contortus (Kaminsky and Rufener, 2012). The AADs have shown activity on 

the fourth larval (L4) stage and adults of major GIN, including drug resistant GIN. A genetic 

analysis of AAD-resistant Caenorhabditis elegans and H. contortus mutants showed AADs 

target nematodes with the activation of a nAChR signaling pathway (Kaminsky et al., 2008). The 

World Health Organization (WHO) approved use of the active enantiomer AAD1566 in sheep of 

New Zealand in 2009 under the name monepantel. This drug is available with the tradename 

ZolvixÓ. A number of studies have shown an absence of toxicity for sheep of doses up to 200 
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mg/kg. Amino-acetonitrile derivatives are newer than the classical anthelmintics and are useful 

for controlling GIN, as there are more susceptible, unexposed GIN, but action is warranted to 

identify mutant worms so the drug can continue to be effective (Kaminsky and Rufener, 2012). 

2.5 Anthelmintic Resistance 

When administrating anthelminitics for therapeutic usage, they must work against the 

infective stage, if it does not affect all life stages, and it should alleviate signs caused by the 

parasite being treated. If the anthelmintic is being used for prophylaxis, the following should be 

considered: cost should be reasonable when evaluating production or preventing clinical and 

subclinical diseases, benefits from prevention should be evaluated against other methods such as 

changing production management, the anthelminitic should not interfere with acquired immunity 

that may save stock in the future, and persistent use of one anthelminitic is strongly discouraged 

as this leads to resistance (Taylor et al., 2007). Prichard et al. (1980) described that resistance 

occurs “when there is a greater frequency of individuals within a population able to tolerate 

doses of a compound than in a normal population of the same species and is heritable”(Prichard 

et al., 1980). According to Garretson et al. (2009), a giraffe in Florida at Lion Country Safari was 

diagnosed with H. contortus with resistance to multiple classes of anthelmintics. This young 

giraffe was the first case in which resistance had been a concern in a zoological setting. Lion 

Country Safari has seen previous death cases as a consequence of high endoparasitism 

(Garretson et al., 2009).  

A commonly used technique to identify anthelmintic resistance is with the Fecal Egg 

Count Reduction Test (FECRT). Martin et al. (1989) showed that the FECRT is an effective 

means of identifying resistance when there is at least 25% resistant worms (Martin et al., 1989). 

While widely used due to lower costs, a more sensitive test, such as a controlled efficacy study 

should be performed and is the gold standard for determining anthelmintic resistance in a 
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population of GIN. Guidelines are set up by the World Association for the Advancement of 

Parasitology (W.A.A.V.P.) for multiple animal species and GIN to identify resistance (Wood et 

al., 1995). Where drug efficacy is < 95%, after a comparison of arithmetic means, then drug 

resistance is present. Drugs should show efficacy ³ 99% against GIN (Martin et al., 1989; Coles 

et al., 2006). 

 Thiabendazole was the first broad spectrum on the market and GIN quickly developed 

resistance in sheep (Drudge et al., 1964) and horses, just 3 years after its introduction for each 

species (Abongwa et al., 2017). 

2.6 Preventative Management Strategies to Anthelmintic Resistance 

Preventative measures should be placed into practice for livestock management to 

possibly slow the development of anthelmintic resistance when they are needed to treat animals. 

Producers should start by maintaining a susceptible worm population by treating selected 

animals. As resistant worm populations continue to rise, caretakers should only use efficacious 

anthelmintics and only treat animals with high GIN infections (Dobson et al., 2011), known as 

“smart drenching”. One way to evaluate animals with high levels of an anemia-causing GIN, H. 

contortus, is by use of the FAMACHA© scoring system, in addition to monitoring FEC. The 

mucous membrane color of the animal’s inside lower eyelid is compared to a FAMACHA© chart 

to determine if the animal is anemic. Best judgement should be used when electing to use a 

dewormer by looking at trends of historic FAMACHA© scores with FEC values (Vatta et al., 

2001). 

Other management strategies include coordinating anthelmintic administration with 

weather, mixed animal grazing, pasture rotation, considering stocking rate, strategic deworming 

protocols and focusing on providing protein necessary for birth and development, which are 
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times of tolerating high levels of GIN (Fleming et al., 2006). Zvinorova et al. (2016) also agrees 

with Fleming et al. (2006) that breeding animals more resistant to GIN infections should be 

included in animal management (Zvinorova et al., 2016). According to Fleming et al. (2006), 

strategies to combat resistance will be worthless if producers continue to purchase animals 

harboring resistant worms, alluding to the importance of quarantining all new animals (Fleming 

et al., 2006). Discovering and researching anthelmintics take a lot of time and money, and 

therefore measures should be taken to preserve current effective anthelmintics and find 

alternative means of treating helminths (de Hostos and Nguyen, 2012). 

2.7 Alternatives for GIN Control 

The need for GIN control, with the increase in prevalence of anthelmintic resistance, has 

made finding alternatives a forefront. Some presently known options for integrative GIN control 

include: copper oxide wire particles, condensed tannin containing forages (e.g. sericea 

lespedeza), vaccines and nematophagous fungi (Terrill et al., 2012). 

2.8 Copper Oxide Wire Particles 

Copper oxide wire particles (COWP) have been evaluated as an alternative to combat 

anthelmintic resistance, despite possible copper toxicity that can occur in sheep. A study 

evaluated the efficacy of COWP at a dose up to 2 g to treat H. contortus in weaning lambs. This 

dose of COWP showed a significant decrease in FEC as compared to the lambs that received the 

placebo, with no signs of copper toxicity (Schweizer et al., 2016). Administration of 4 g of 

COWP has shown to be efficacious for up to 28 d (P£0.01) in male goats, with reported 

anthelmintic resistance, after grazing on a pasture with H. contortus available; furthermore, 

doses of 4 g may be administered safely 84 d post treatment (Vatta et al., 2012). In addition, 

COWP can be given with current anthelmintics as an extra mean to control H. contortus in 

lambs. A study evaluated different sources of COWP, combined with albendazole, in Katahdin 



 12 

lambs in the ability to reduce GIN in the feces and FEC. Significance was illustrated for the all 

groups of COWP in reducing the larvae in feces, and when combined with albendazole, the 

anthelmintic’s efficacy increased leading to a decrease in multiple larval species in feces. 

Alternative applications with COWP in combination with current drugs could prove useful in 

reducing efforts against anthelmintic resistance (Burke et al., 2016).  

2.9 Condensed Tannins 

An additional source of alternative helminth control can be found in plants containing a 

compound known as condensed tannins. Sericea lespedeza (SL), Lespedeza cuneata, is a 

perennial legume that is good for improving and conversing soil, growing in sandy soils (United 

States Department of Agriculture, 1948). Sericea lespedeza plants may be found in some 

pastures and are known to contain condensed tannins. A decrease in FEC and switching the GIN 

population from H. contortus to other Trichostrongylus spp. may be seen when lambs graze on 

pastures of Bermudagrass mixed with SL or when grazing pure SL. Lambs must learn to graze 

SL with their dams, as they will not forage this plant on their own. Effects of grazed SL are 

limited when H. contortus is not the predominant GIN. The SL plant may be an applicable 

alternative when used with COWP for controlling GIN (Burke et al., 2012). 

2.10 Vaccines 

Vaccines have been assessed as means to control GIN infections. Helminths are known to 

use proteolytic enzymes when entering hosts’ tissues of their destination, evading the immune 

response of the host while feeding on proteins. Cysteine proteases are produced by the host to 

hinder GIN from feeding or invading mucosa, potentially leading to parasitic elimination or 

death. Vaccines are aimed at containing these proteases to inhibit GIN from invading tissue by 

eliminating their enzymes. Some problems are seen with the vaccines, such as protein not being 
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folded properly, as in nature, and glycosylation that occurs after translation. More research is 

needed to understand genes in effect (Knox, 2012). 

2.11 Nematophagous Fungi 

An additional means of combatting anthelmintic resistance is the use of biological 

control. Biological control is defined by an organism that inherently competes with the organism 

of concern by keeping its population lower than if it were not present. Biological control can be 

either natural, where control is in the existing environment, or applied, where there is human 

intervention. In the environment where the competitive organism can control the other organism, 

there is simply not a large enough effect to control the GIN that infect the animals or the host 

would have control. Biological control may affect all stages of GIN control but the free-living 

stage appears to be the best target for control. Controlling GIN in the free-living stage involves 

creating an unsuitable living environment for GIN or the use of GIN as a food source. Potential 

sources of GIN control are nematophagous fungi, which are divided into three groups (Waller 

and Faedo, 1996). Barron (1977) described two categories of fungi, predacious fungi, which had 

nematode trapping devices, and endoparasitic fungi, which affect the nematode with spores 

sticking to the cuticle or after ingestion of the spores would penetrate the gut (Barron, 1977). An 

additional stage was identified as the egg-parasitic fungi, where the fungi intervene at GIN egg 

stage (Nordbring-Hertz, 1988).  

Trap forming fungi, such as D. flagrans, have been effectively used to reduce nematode 

populations (Herrera-Estrella et al., 2016). Duddingtonia flagrans is a ubiquitous fungus that is 

found in low levels in the environment. The fungal spores can be incorporated in animal feed to 

travel through the digestive tract unchanged and concentrate in the feces in high numbers (Miller 

and Fowler, 2012). Larsen et al. (1991a) recovered several species of nematophagous fungi from 

cattle, that were fed from a successful in vitro study, and tested them for predacious properties 
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against Ostertagia ostertagi nematodes. D. flagrans was one of the isolates that survived the 

ruminants’ gastrointestinal tract and controlled infective O. ostertagi larvae in the feces by 96 

percent (Larsen et al., 1991b). 

Administering the fungus to benefit animals must be feasible for the caretaker and 

receiving animal. A few ways to administer fungal spores is through feed application, 

supplementary feed blocks, or intra-ruminal control release devices (IRCRD) (Waller and Faedo, 

1996). Long term administration of fungal chlamydospores with barley was demonstrated as a 

potential practical application of chlamydospores in feed (Gronvold et al., 1993). Administering 

fungal spores in feed blocks can be an economical way to introduce the fungus with fewer 

caretaker applications. According to Waller and Faedo (1996), supplementary blocks may be 

effective means of administering fungal spores to livestock. Lastly, an IRCRD should last 

preferably 60 days or more, which could be administered during periods that would address 

seasons highest for GIN infections (Waller and Faedo, 1996). A successful experiment using D. 

flagrans as a control for GIN larvae resulted in a large reduction (> 80%) of L3 in sheep feces at 

a dose of 5x105 and 106 chlamydospores/day by introduction through an abomasal cannula and 

orally to normal sheep (Larsen et al., 1998). Storage of the fungus must be practical as well. 

Nutritional pellets were shown to be effective at reducing H. contortus larvae after being stored 

for 8 weeks in the following conditions: stored on shelves indoors, in a refrigerator at 4ºC, 

outside under a covering, and completely exposed outdoors. Storage of this fungus supports the 

use of the fungus as a feasible option for animal caretakers, as multiple scenarios do not impact 

fungal effect on larval reduction (Fitz-Aranda et al., 2015). 

Duddingtonia flagrans has activity against infective GIN larvae such as H. contortus, a 

parasite that reduces the productiveness of ruminant animals. The nematode trapping loops may 
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be present by the first 9 hrs of inoculation. A “mucilaginous substance” is present at the places in 

contact on the larva by the trap and bacteria may be found at these sites. The cuticle may be 

penetrated by 48 hrs from nematode-fungal contact (Campos et al., 2008). 

An important factor to take into account when introducing anything new into the 

environment is identifying whether long term effects will be observed. Waller and Faedo (1996) 

addressed the concern of this nematophagous fungi trapping other nematodes not intended to be 

eliminated such as native, advantageous saprophytic nematodes that help recycle fecal matter 

(Waller and Faedo, 1996). According to a study with soil supplemented with D. flagrans, native 

soil inhabitants were not affected by the fungal addition and D. flagrans was no longer present in 

the environment two months following pasture treatment (Saumell et al., 2016). 
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CHAPTER 3  
MATERIALS AND METHODS 

3.1 Location and Animals 

This study was conducted at Disney’sÒ Animal Kingdom Lodge in Lake Buena Vista, 

Florida. The animals were maintained on 3 savannahs, Sunset, Arusha and Uzima. The animals 

on Sunset savannah had access to 7.28 hectares for grazing, while both Arusha and Uzima 

savannahs each provided 4.45 hectares for grazing. The exotic ruminant species that were 

monitored during this study were reticulated giraffe (Giraffa camelopardalis reticulata), scimitar 

horned oryx (Oryx dammah) and roan antelope (Hippotragus equinus). These species were 

selected based on previous observations (Dr. James E. Miller, personal communication) that 

indicated they were the high-risk species most susceptible to nematode infection. Sunset 

savannah had 4 giraffe, 2 oryx and 2 roan antelope. Arusha had 3 giraffe and 3 roan antelope, 

while Uzima had 4 giraffe and an oryx. There were other animals on each savannah (Tables 1-3). 

The animals were supplement fed their standard feed Mazuri® ZuLife® Wild Herbivore 

Diet and the pregnant female on Arusha savannah was fed Mazuri® Wild Herbivore Plus Diet 

(Land O’Lakes Purina Feed LLC, Richmond, IN), with acacia leaves, willow tree branches and 

alfalfa hay. Animals were allowed free access to water. Each morning the animals were brought 

into a barn to feed ad libitum from their individually measured, partial mixed ration and the 

remaining diet came from grazing the savannah. The forage available consisted of coastal 

Bermudagrass, Timothy grass and browse. 
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Table 1. Exotic animal species present on Sunset savannah at Disney’s® Animal Kingdom Lodge 
(* indicates animals that were treated). 

Sunset 
Common Name Scientific Name 
Ankole cattle Bos taurus taurus ankole 
Wildebeest Connochaetes tarurinus 
Impala Aepyceros melampus 
Hartmann's mountain zebra Equus zebra hartmannae 
Grey crowned crane Balearica regulorum gibbericeps 
Ostrich Struthio camelus 
Marabou stork 
Reticulated giraffe* (n=4) 
Scimitar horned oryx* (n=2) 
Roan antelope* (n=2) 

Leptoptilos crumeniferus 
Giraffa camelopardalis reticulata 
Oryx dammah 
Hippotragus equinus 

 
Table 2. Exotic animal species present on Arusha savannah at Disney’s® Animal Kingdom 
Lodge (* indicates animals that were treated). 

Arusha 
Common Name Scientific Name 
Waterbuck Kobus ellipsiprymnus ellipsiprymnus 
Wildebeest Connochaetes tarurinus 
Impala Aepyceros melampus 
Thomson's gazelle Eudorcas thomsonii 
Red river hog Potamochoerus porcus 
Plains zebra Equus quagga 
Grey crowned crane 
Reticulated giraffe* (n=3) 
Roan antelope* (n=3) 

Balearica regulorum gibbericeps 
Giraffa camelopardalis reticulata 
Hippotragus equinus 

 
Table 3. Exotic animal species present on Uzima savannah at Disney’s® Animal Kingdom Lodge 
(* indicates animals that were treated). 

Uzima 
Common Name Scientific Name 
Ankole cattle Bos taurus taurus ankole 
Common eland Taurotragus oryx 
Lesser kudu Tragelaphus imberbis australis 
Impala  Aepyceros melampus 
Grey crowned crane Balearica regulorum gibbericeps 
African spoonbill Platalea alba 
Spur-winged goose Plectropterus gambensis 
South African shelduck 
Reticulated giraffe* (n=4) 
Scimitar horned oryx* (n=1) 

Tadorna cana 
Giraffa camelopardalis reticulata 
Oryx dammah 
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3.2 Experimental Design 

At Disney’sÒ Animal Kingdom Lodge, the naturally infected exotic ruminants remained 

under their normal original living conditions for the duration of the study. Because Sunset 

savannah was the largest and almost equal to Arusha and Uzima combined, it was designated the 

control. Previous observations (Dr. James E. Miller, personal communication) showed that the 

winter months, December through March, provided the highest infection rates coupled with the 

highest larvae levels on forage. Sunset savannah was the control and the experimental animals 

were fed a daily ration of feed without chlamydospores. The experimental animals on Arusha 

and Uzima savannahs were treated with 30,000 chlamydospores/kg of BW of D. flagrans 

(BioWorma®, International Animal Health Products Pty Ltd, Huntingwood, Australia) mixed 

into their daily supplement ration. The dose of fungal spores administered was chosen based on 

previous studies performed at Disney’sÒ Animal Kingdom Lodge, where a reduction of L3 was 

seen from in vitro coprocultures (Terry, 2013). Animals on each savannah were allowed to graze 

and water was available ad libitum. While animals were inside the barn, the animal care team 

observed research animals for defecation, to immediately collect samples from the tops of fresh 

fecal masses. Each fecal collection was implemented for multiple 3-5 day intervals, from 

December 8, 2015 through March 21, 2016. Fecal collections were conducted within 6 days prior 

to the start of chlamydospore feeding, during the 3 months of chlamydospore feeding and a 

month after chlamydospore feeding was removed, for a total of 30 fecal collection periods. 

Animals in the treatment groups were administered chlamydospores during fecal collection 

periods 3 – 29. All procedures prior to implementation were approved for this study’s animal 

care and use at DAKL by two animal review processes by Disney Animal Care and Welfare 

Committee (DACWC). Animals’ feces were monitored for FEC and used for coprocultures 



 19 

(percent development and survival of L3 in feces). Savannah forages, to evaluate L3 available on 

forage (L3/kgDM) and percent L3 population distribution, were sampled monthly from 

December, 2015 through May, 2016. 

All fecal and forage samples were shipped to the Louisiana State University’s School of 

Veterinary Medicine (LSU-SVM), Baton Rouge, Louisiana by overnight express for processing. 

3.3 Techniques 

3.3.1 Fecal Egg Count 

A modified McMaster’s procedure (Whitlock, 1948) was used to determine each animal’s 

FEC. Fecal pellets were weighed in 120 mL cups to equal 2 g of feces. Pellets were crushed and 

evenly mixed with a tongue depressor in 30 mL of salt solution (737 g salt mixed with 3000 mL 

water). The contents were mixed by an electric hand mixture (DrinkmasterÒ Drink Mixer, 

Hamilton Beach Brands, Inc., Glen Allen, NC) controlled by a rheostat switch. A transfer 

pipette, with a slant-trimmed tip, was used to transfer a sample of the mixture into a single 

chamber of a McMaster’s slide (Chalex, LLC, Park City, UT). The mixing was repeated to fill 

the second chamber of the McMaster’s slide. Each McMaster’s slide was read at 100x 

magnification. All lanes of both chambers were visually scanned to count trichostrongyle-type 

eggs. The total number of eggs counted was multiplied by 50 to determined eggs per gram 

(EPG). 

If no eggs were counted for the modified McMaster’s procedure, a double centrifugation 

technique was performed to obtain the FEC. Two grams of feces were weighed in 120-mL cups 

and crushed with a tongue depressor. Fifteen mL of water were added to each cup and mixed 

with the feces. The mixture was poured through a small tea strainer over a funnel into a 15-mL 

centrifuge tube. Water was added to tubes to make 15 mL, capped, and centrifuged for 10 min at 

1500 rpm. The supernatant was poured off and Sheather’s sugar solution (500 g sugar with 320 
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mL water with a specific gravity of 1.25) was added to the 14 mL mark. Two wooden applicator 

sticks were used to break up the sediment in the sugar mixture. Sugar solution was added to a 

positive meniscus. A coverslip was placed on the top of the tube and the tube was centrifuged as 

per previous settings. The cover slip was removed after centrifugation and placed on a 

microscope slide. All trichostrongyle-type eggs were counted over the entire coverslip at 100x 

magnification. The number of eggs counted was extrapolated to obtain the EPG (see ch 3.4.1 for 

equation).  

3.3.2 Coprocultures 

Each individual sample of feces was weighed (between 5.0 g and 12.0 g) in 120-mL cups. 

The feces were crushed with a tongue depressor and vermiculite was added (approximately a 

50:50 ratio). Water was added and mixed until a crumbly consistency was obtained. Cheese cloth 

squares, secured by rubber bands, covered the cups. Water was added to the bottom of a 250-mL 

tri-corner cup to about 0.5 in and the cup containing feces was inverted and suspended above the 

water line in the tri-corner cup. This allowed maintenance of humidity. These coprocultures 

remained for 14 d in an incubator at 25°C to allow complete larval development. 

After the incubation period, the cups were removed from the incubator and placed on the 

counter top where warm water was added to cover the culture mass in each 120-mL cup. After a 

12 hr period, the 120-mL cup was removed from the 250-mL cup and the supernatant in the 250-

mL cup was vacuumed down to less than 15 mL and transferred to a 15-mL centrifuge tube 

containing approximately 1 mL of 10% formalin. 

3.3.3 Forage Sampling 

For forage collection, Sunset savannah consisted of 9 zones and Arusha and Uzima 

savannahs consisted of 5 zones each. Within each zone, an animal care team member randomly 

tossed a hoop (square-shaped clothes hanger – 400 cm2) three times and grass shears were used 
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to cut the forage down to ground level within the hoop. Forage samples were stored in zip-top 

bags and packaged with cold packs to be shipped within 24 hours for overnight express. 

3.3.4 Forage Processing 

Forage samples were processed within 48 hrs of arrival at the LSU-SVM. A subsample 

was removed from the bag and weighed in a 120 mL cup. Subsamples were placed in an oven 

(37°C) for 10 – 14 d to obtain dry weight. Remaining forage was weighed in the zip-top bags. 

Samples were submerged by inverting the bags into 3.5 L labeled buckets filled with warm water 

and a drop of dish soap for surfactant purposes (helps L3 separate from forage). Zip-top bags 

were air dried for at least seven days and then weighed. Buckets remained overnight, undisturbed 

for 12 hrs at room temperature (approximately 25°C). A large tea strainer was used to strain 

forage from buckets and remaining water was left to settle for at least 12 hrs at room 

temperature. Water was poured off so that it could be placed in 1000 mL tri-corner cups. 

Contents were allowed to settle for another 12 hrs (at room temperature) and the supernatant was 

siphoned to approximately 400 mL and transferred to 400 mL tri-corner cups. The settling 

process was repeated down to less than 120 mL cups and the mixtures were transferred to 120 

mL cups. Rubber bands secured Kimwipes® to the tops of the 120 mL cups, to filter remaining 

particulates. Cups were inverted and submerged in 250 mL cups containing warm water. After 

12 hrs, the 120 mL cups were removed so debris-free water was present in the 250 mL cups. 

After another settling process of 12 hrs at room temperature the supernatant was vacuumed down 

to less than 15 mL and transferred to 15 mL tubes containing approximately 1 mL of 10% 

formalin. 
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3.3.5 Larvae Enumeration and Identification 

The tubes containing sediment from fecal coprocultures were vacuumed down to 

concentrate the larvae in a small volume for enumeration and larval identification. The volume 

of remaining fluid was noted and the fluid was vortexed to get an even distribution of larvae. A 

100 µL aliquot was removed and placed on a microscope slide. A wooden applicator stick was 

used to gently mix a drop of Lugol’s iodine to stain larvae and a cover slip was placed over the 

drop. The complete cover slip was read at 100x magnification, where larvae were identified, up 

to 100 larvae, and the remaining larvae were counted on the slide. If 100 larvae were not 

identified for the first aliquot, additional 100 mL aliquots were taken until 100 larvae were 

identified and then the remaining larvae were counted for the aliquot. The values were used to 

calculate larvae per gram (LPG) of feces. The same procedures were done for all tubes of larvae 

collected from forage samples. 

3.4 Calculations 

3.4.1 Fecal Egg Count 

When 2.0 grams of feces were weighed, the number of eggs per gram (EPG) of feces was 

calculated with the following equation: 

# of eggs counted per McMaster's slide × 50 = EPG 

If the weight (wt) of the feces was less than 2.0 grams or if the number of eggs counted 

on the McMaster’s slide was 0, a double centrifugation procedure was performed and the 

following equation was used to calculate the EPG: 

2
wt of feces

 × # of eggs counted × 50	= EPG 
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3.4.2 Larvae per Gram of Feces 

The number of larvae per g (LPG) recovered from coprocultures was calculated by: 

	
# of L3 larvae counted per tube

weight of feces (g)
 = LPG 

3.4.3 Percent Larval Development and Survival 

The percentage of larvae that developed and survived after hatching in coprocultures was 

calculated by: 

LPG
EPG

 × 100 = % development and survival 

3.4.4 L3 per Kg of Dry Matter of Forage 

Forage samples were collected and used to recover L3 to determine the number of L3 that 

were available to the animals on the forage. To determine the number of L3 in each collected 

subsample, the weight of the forage was determined by: 

wt of bag with collected forage – wt of empty bag = wt of collected forage (g) 

A subsample of forage was removed from each bag and used to determine dry matter (DM) by: 

	
wt of wet subsample forage (g)
wt of dry subsample forage (g)

	=	% DM 

The % DM was converted into kg of DM (kgDM) by: 

wt of collected forage (g) × % DM
1000

 = kgDM 

The number of recovered L3 were divided by kgDM to get the number of L3 for each subsample 

on a dry matter basis (L3/kgDM) by: 

# of L3 larvae counted per tube
kgDM

 = 
L3

kgDM
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3.5 Statistical Analysis 

Data analyses were conducted using SAS® software (SAS Institute. 2017. SAS/STAT 

User’s Guide, Version 9.4. Cary, NC). An n-way analysis of variance (ANOVA) PROC GLM 

was used to further evaluate the significance of experimental data. Data for FEC and L3/kgDM 

were changed with a logarithmic transformation to obtain a more normal population distribution 

for statistical analyses. The response variables used in the analyses were logFEC, percent larval 

development and survival, and logL3/kgDM. Time, savannah, treatment, and treatment x time 

were analyzed as fixed effects. Post hoc comparisons were performed with least squares means 

and P-values £ 0.05 were determined significant. 

 

  



 25 

CHAPTER 4  
RESULTS 

4.1 Mean Fecal Egg Count 

The range of mean FEC for animals on Sunset savannah, the control, was 101 to 382.6 

EPG. The mean FEC of treatment animals on Arusha and Uzima savannahs ranged from 141.7 to 

742 and 33.4 to 383.2 EPG, respectively (Figure 1). 

 
 
Figure 1. Mean (+SEM) fecal egg count (FEC) for captive exotic ruminant species at Disney’s® 
Animal Kingdom Lodge on control (C) savannah (Sunset, n=8) and treatment (T) savannahs 
(Arusha, n=6 and Uzima, n=5) for 30 collection periods supplemented with chlamydospores of 
Duddingtonia flagrans (30,000 per kg BW). Shaded area indicates administration of 
chlamydospores mixed in supplement feed.
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A log transformation of FEC, to obtain a normalized distribution of egg counts, showed 

that there was a significant difference (P<0.001) for treatment x time and time, but no significant 

difference (P>0.05) was observed for treatment. 

During the duration of the study, there was no significant difference (P>0.05) observed 

for logFEC between treatment savannahs, Arusha and Uzima, except (P<0.01) for collection 

period 22. When comparing logFEC for Uzima and Sunset savannahs, there was no significant 

difference (P>0.05) for most collection periods, except for collection periods (P<0.05) 10 and 

22. The logFEC comparison for Arusha and Sunset savannahs were not significantly different   

(P>0.05) except (P<0.05) for periods 3, 4, 8, 10, 27, and 29.  

4.2 Percent Larval Development and Survival 

The percent development and survival of larvae in feces for Sunset savannah animals 

ranged from 6.3 to 46.7%. For collection periods 1, 2, 3 and 4, percent development and survival 

were 33.9%, 23.3%, 11.1% and 9.2%, respectively. Subsequent to period 4, percent development 

and survival increased and remained oscillating around a mean of about 25% for the duration of 

the study. 

The percent development and survival of larvae in feces for Arusha savannah animals 

ranged from 0.1 to 23.4%. The first three collection periods (before treatment started) were 

above 9% and during the treatment period, it was consistently close to 0%. 

The percent development and survival of larvae in feces for Uzima savannah animals 

ranged from 0 to 24.7%. The first three collection periods (before treatment started) were above 

21% and during the treatment period, it was consistently close to 0% (Figure 2).  
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Figure 2. Mean (+SEM) percentage development and survival of infective larvae (L3) in feces of 
giraffe, roan antelope and oryx at Disney’s® Animal Kingdom Lodge on Sunset savannah 
(control, n=8), Arusha (n=6) and Uzima (n=5) savannahs (treatment) for collection periods. 
Collection periods were at 3-5 d intervals and treatment was with Duddingtonia flagrans 
chlamydospores of (30,000 per kg BW, * indicates beginning and end of treatment) mixed in 
supplement feed. 
 

A significant difference was observed for treatment x time (P<0.05), time and treatment 
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significant difference (P>0.05) observed for percent larval survival and development for samples 

for all savannahs. 

Percent development and survival for both Arusha and Uzima savannahs were similar    

(P>0.05), while the mean was approximately 15% higher before treatment administration and 

close to zero percent for each collection period during treatment. Percent development and 

survival of L3 for animals of Sunset savannah were similar (P>0.05) before treatment was 

started and significantly (P<0.05) greater than animals of both Arusha and Uzima through period 

26. For periods 27 – 29, differences were mixed and at period 30 there was no difference 

(P>0.05) between all animals of this study.  

4.3 Recovery of L3 from Forage 

The mean recovery of L3 from Sunset savannah forage ranged from 323 to 12,048 

L3/kgDM (Figure 3). Arusha and Uzima savannah forages had a constantly smaller range of 

from 214 to 2,510 and 111 to 3,142 mean L3/kgDM, respectively. 

A log transformation of L3/kgDM from forage was performed to obtain a more normal 

distribution to compare savannahs over time. A significant difference (P<0.0001) was observed 

for logL3/kgDM of forage for savannah and time, but there was no significant difference 

(P>0.05) for savannahs x time. Overall, there was a significant difference (P<0.0001) of 

logL3/kgDM of forage between Arusha and Sunset savannahs and between Uzima and Sunset 

savannahs, while Arusha and Uzima savannahs showed no overall significant difference 

(P>0.05). During the month of February, the peak month for larvae, there was a significantly 

(P>0.0001) higher number of logL3/kgDM on forage on Sunset savannah as compared to 

Arusha and Uzima savannahs. 

At the start of the study (DEC), the logL3/kgDM recovery was similar (P>0.05) for all 3 

savannahs. Subsequent to starting treatment, the logL3/kgDM recovery remained relatively 
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consistent and similar (P>0.05) on Arusha and Uzima savannahs, and increased on Sunset 

savannah in FEB. After treatment was stopped (MAR), logL3/kgDM recovery for all savannahs 

returned to pre-trial values. Treatment x time was not significant (P>0.05), but in FEB, Sunset 

savannah larval recovery was significantly (P<0.05) greater than both Arusha and Uzima 

savannahs. 

 

Figure 3. Mean (+SEM) infective larvae (L3) recovered from forage on a dry matter basis 
(kgDM) at Disney’s® Animal Kingdom Lodge. Sunset savannah was the control (n=8, non-
treated animals), and Arusha and Uzima were the treatment savannahs (n=6 and 5, respectively, 
animals treated with Duddingtonia flagrans chlamydospores (30,000 per kg BW) mixed in 
supplement feed). * indicates beginning and end of treatment. 
 

4.4 Percent Larval Population Distribution from Forage Samples 

The overall range for percent of H. contortus L3 recovery from forage for all months 
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respectively. Additional larval species were identified from the forage as Trichostrongylus spp., 

Cooperia spp., Ostertagi spp., and Oesophagostomum spp. (Figure 4).  

The percent of H. contortus L3 for Uzima savannah started at a high 86.5% and dropped 

to 41.7% after a month of administration and remained less than 52% for the duration of 

chlamydospore administration, with an additional decrease to 29.2% the month following cease 

of chlamydospore administration. For the last month of forage collection, H. contortus percent 

L3 recovery when back up and was 84.2%. 

Arusha savannah had an initial 93.9% H. contortus L3 in DEC. During the treatment 

period, percent H. contortus L3 remained relatively consistent around 90%. After treatment 

stopped, percent H. contortus L3 decreased to 39% and 36.3% for APR and MAR, respectively. 

Sunset savannah had an initial 53.3% H. contortus L3 in DEC. Percent L3 then increased 

in JAN and remained relatively consistent around 80% for the duration of the study.  



 31 

 
 
Figure 4. Mean (+/- SEM) percentage of Haemonchus contortus infective larvae (L3) recovered 
from forage samples at Disney’s® Animal Kingdom Lodge. Sunset savannah was the control 
(n=8, non-treated animals), and Arusha and Uzima were the treatment savannahs (n=6 and 5, 
respectively, animals were treated with Duddingtonia flagrans chlamydospores (30,000 per kg 
BW) mixed in supplement feed). * indicates beginning and end of treatment. 
 

The overall trend was for H. contortus L3 to decrease on Arusha and Uzima forage and 

increase on Sunset forage.  
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CHAPTER 5  
DISCUSSIONS/CONCLUSIONS 

As anthelmintic resistance awareness increases, more methods of control need to be 

investigated for controlling GIN in enclosures that lack refugia. According to , 7 – 10 years and 

up to $100 million is invested in the development of a new FDA-approved drug for an animal 

species. In addition to the rigorous process of drug development, when drugs are sold for human 

use, the costs are supplemented by sources, such as the government or insurances, but animal 

medication comes at the cost of the producer or animal owner. A number of studies investigated 

controlling GIN forage infectivity with D. flagrans in a livestock production type setting but few 

have investigated the use in zoological settings. Zoological parks are important for biodiversity, 

conservation and education for the public. Parasitic control is becoming of more importance as 

deaths are being identified as being caused by GIN (Wu et al., 2004). Previous studies at 

Disney’s® Animal Kingdom Lodge have shown that feeding D. flagrans chlamydospores 

effectively reduced L3 in feces (Terry, 2013) but further investigations on this fungus’ effects on 

forage infectivity in a zoological setting with captive exotic ruminants have not been performed.  

Fecal egg counts were monitored during the course of the study and statistically 

evaluated on logFEC. Duddingtonia flagrans supplemented feed administered to animals on 

Arusha and Uzima savannahs showed a gradual decrease in FEC over the duration of the study. 

Animals on Sunset savannah did not receive D. flagrans supplemented feed and the FEC showed 

no significant change in FEC over time. These results were as expected as D. flagrans is 

effective against the free larval stages in the feces and does not affect the developing or adult 

worm population residing in the animal (Githigia et al., 1997; Dimander et al., 2003). With D. 

flagrans acting at the free larval stage, the decrease in FEC from feces of treated animals is likely 

due to a decrease in infective larvae available on the forage, lowering the number of larvae that 
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would develop to egg producing adults over time (Chandrawathani et al., 2004; Santurio et al., 

2011). Although individual collection periods between treatments showed significant 

differences, further extrapolation on variations could not be explained as facilities nor animals 

were able to be observed during this study. In addition, an animal was pregnant during the 

duration of this study and the FEC did not seem to be affected by pregnancy. 

Larval reduction in feces by nematode trapping fungi D. flagrans can range from 30% to 

more than 90% (Larsen et al., 1991b; Pena et al., 2002). During periods of treatment the percent 

development and survival of larvae from animals’ feces was close to zero, while the animals not 

supplemented chlamydospores on the control savannah exhibited a higher larval development 

and survival. There was a corresponding reduction in number of L3 recovered from treatment 

savannahs’ forages during a peak larval month (FEB), as compared to the high level of forage L3 

from the control savannah forage. This suggested that fewer larvae developed and survived, 

which was most likely due to fungal predation; thus, fewer L3 were available on forage to infect 

grazing animals.  

Results from this study are similar to another study done at Disney’s® Animal Kingdom 

Lodge where a percent reduction was seen for L3 in feces of captive artiodactyls fed 30,000 and 

500,000 chlamydospores per kg BW of D. flagrans. The study showed both doses were effective 

in reducing development and survival of larvae in feces over a short period of time in a small 

number of exotic hoofstock in a zoological setting (Terry, 2013). This current study used a dose 

of 30,000 chlamydospores per kg BW for a longer duration to evaluate the predacious nematode 

trapping fungi’s effect on L3 available on forage for grazing. Results suggested that there may be 

a potential for D. flagrans to be used for controlling the free-living larval stages of GIN in a 

zoological setting when fed daily.  
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In addition, the trend of decreasing percent H. contortus L3 on treatment forage, and not 

on control forage, might suggest that the fungus may have a selective effect on this particular 

GIN. The target of H. contortus is important as this parasite is the main one that effects the 

health status and appearance of these exotic hoofstock. 

Overall, this study shows the potential to reduce pasture infectivity of GIN with the long-

term treatment of D. flagrans. There were limitations to this study such as the number of animals 

on each pasture and the variation in animal species that shared the environment. This however is 

a closer estimation to an actual zoological setting where animals need to endure the least amount 

of stress as possible, which could be easily influenced by changes in the environment and already 

established groups of animals (Wielebnowski et al., 2002). In addition, mixed species grazing 

can be helpful in reducing GIN populations as some animals will consume forage with L3 which 

then do not survive in that host (Barger and Southcott, 1978). Another factor accounting for the 

small sample size was the limited number of high risk animals that were available. The smaller 

sample size can lead to results that may be influenced by missing samples or individual animal 

variation. The variability could be influenced by some animals not receiving the complete dose 

of chlamydospores, as animals were portioned the correct dose but were allowed to eat ad 

libitum, possibly not consuming the full dose. A possible solution to this problem would be to 

find or develop a device that could be administered to the animal to provide a constant release of 

chlamydospores over a period of time (Waller and Faedo, 1996). Thus, daily administration 

would not be a limiting factor. Additional investigation should be conducted to evaluate other 

optional delivery methods. Further studies should also assess the effect of combining various 

anthelmintics with D. flagrans chlamydospores and/or other alternative control measures in an 
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integrated approach to controlling GIN in exotic zoo hoofstock and domestic ruminant 

production systems.  
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