Dicoumarol toxicity in cattle associated with ingestion of silage containing sweet vernal grass (Anthoxanthum odoratum)

DJ RUNCIMANa, AM LEEb, KFM REEDc and JR WALSHc

A diagnosis of dicoumarol toxicity in a herd of Friesian cattle was made following investigation of the deaths of three mature cows and eleven yearling heifers. Affected stock had been fed wrapped, bailed silage containing approximately 90% sweet vernal grass (Anthoxanthum odoratum). Sweet vernal grass contains coumarin, which can be converted to dicoumarol, a vitamin K antagonist, through the action of moulds. Most deaths were preceded by lethargy, severe anaemia and subcutaneous and internal haemorrhage. Dicoumarol toxicity was suspected based on clinical signs, necropsy findings and prolonged prothrombin and activated partial thromboplastin times. Dicoumarol analysis of blood from affected animals and silage confirmed the diagnosis.

\textbf{References}
Dicoumarol toxicity is a very rare disease in cattle in Australia. It has been reported in cattle fed hay or silage made from sweet vernal grass (Anthoxanthum odoratum) in England and the USA. The only reported case of dicoumarol toxicity in Australia involved cattle and sheep fed hay with a high content of sweet clover. The current report describes an outbreak of dicoumarol toxicity in a dairy herd in South West Victoria, which had been fed silage with a high content of sweet vernal grass. In a herd of 230 Holstein Friesian dairy cows, seven were affected, of which three died. On the same property, within a group of 70 yearling heifers, eleven died of twenty suspected to have suffered dicoumarol toxicosis.

Case report

Clinical signs

An investigation commenced following the deaths of nine yearling heifers and three mature cows. Clinical signs included large subcutaneous and joint swellings in carpal, shoulder and tarsal joints, and haemolactia in one milking cow. Death usually followed a period of illness lasting 3 to 5 days, however three deaths (one cow and two heifers) occurred suddenly in apparently normal stock. Due to poor vaccination history, the stock were initially presumed to be dying from blackleg (Clostridium chauvoei). However, vaccination did not prevent further deaths and treatment with intramuscular injections of procaine penicillin resulted in large injection site swellings.

The heifers’ diet consisted almost entirely of silage cut from a recently purchased out-paddock. The silage had been made into individually wrapped round bales and was approximately 5 months old. Silage represented nearly 100% of their dry matter intake. The bales were fed out in steel ‘hay rings’. The milking cows were fed silage as part of their diet, which also included a limited amount of perennial ryegrass pasture, rape and pelleted concentrates. The silage represented approximately 50% of the cow’s dry matter intake. The silage was rolled out onto the ground.

Signs of disease first occurred approximately 21 days after silage feeding commenced in both heifers and cows, and continued to occur over a 5 week period. There were no new cases after the feeding of silage ceased.

Over a 3 day period, six heifers were examined, two of which were necropsied. They were aged between 10 and 12 months and weighed about 200 to 250 kilograms.

Initially a live heifer (Heifer 1) was examined. She was standing but reluctant to walk, her left hind leg was grossly swollen and felt hard to touch. Mucous membranes were very pale, rectal temperature was 36.1°C, heart rate 144 beats per minute, and respiratory rate and lung sounds were normal (20 breaths per minute). Rectal examination revealed crepitus in the pelvis and abdomen caudal to the left kidney, which made palpation of her uterus and bladder impossible. A second heifer (Heifer 2), which had died suddenly overnight was necropsied.

At necropsy, Heifer 2 had a small subcutaneous haemorrhage over the right flank, small ecchymotic haemorrhages over the serosal surface of the rumen and a large haemorrhage in the retroperitoneal space surrounding the left kidney, and extending caudally into the pelvis. This haemorrhage was estimated to be at least 5 L in volume. Histological examination of tissues from this heifer revealed marked haemorrhage into pericapsular adipose tissue of the kidney, but normal renal tissue. There was subendocardial haemorrhage, but the heart was otherwise evidently normal stock. Due to poor vaccination history, the stock were initially presumed to be dying from blackleg (Clostridium chauvoei). However, vaccination did not prevent further deaths and treatment with intramuscular injections of procaine penicillin resulted in large injection site swellings.

Table 1. Incidence and case fatality rate for heifers and cows in herd with dicoumarol toxicity.

<table>
<thead>
<tr>
<th>Class of stock</th>
<th>Number in group</th>
<th>Morbidity rate a,c</th>
<th>Case fatality rate b,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows</td>
<td>230</td>
<td>7/230 (3%)</td>
<td>3/7 (42%)</td>
</tr>
<tr>
<td>Heifers</td>
<td>70</td>
<td>20/70 (29%)</td>
<td>11/20 (55%)</td>
</tr>
</tbody>
</table>

Proportion of group affected over five weeks.
Proportion of cases that died within seven days of onset of clinical signs.
Only the six cases described were confirmed to be dicoumarol toxicosis, other cases were reported by the stock manager or initially diagnosed as other disease.

Figure 1. Dicoumarol epidemic in a herd of 70 Friesian heifers. Cases started to occur three weeks after the onset of feeding silage containing sweet vernal grass. The four non-fatal cases eight weeks after the onset of silage feeding were all treated with vitamin K1.

Figure 2. Dicoumarol epidemic in a herd of 230 Friesian cows. As with the heifers in Figure 1, cases started three weeks after the onset of silage feeding.
normal. Early degeneration of periacinar hepatocytes was suggestive of hypoxic liver damage. Other tissue samples had unremarkable findings.

Necropsy examination of Heifer 5 revealed a large haemorrhage on the serosal surface of the omasum (black arrow), and a haematoma within the mediastinum (white arrow).

Results of haematologic examination
Examination of blood from Heifer 1 revealed profound anaemia and hypoproteinaemia, with normal platelet numbers. Serum biochemical analysis showed no evidence of hepatopathy (GLDH, GGT, bilirubin within normal limits) but low serum protein (Table 2). Laboratory findings were consistent with blood loss. Since there was no evidence of external bleeding, it was assumed the crepitus felt in the abdomen and the swollen leg were due to haematomas. Examination of blood from Heifers 3 and 4 was consistent with a coagulation factor deficiency (Table 2).

A coagulopathy was suspected. Bracken fern toxicity was excluded, since there was no possible exposure to bracken fern and platelet numbers were adequate. There was no history of exposure to rodenticides. Based on biochemical analysis of blood from Heifer 1 and histological examination of tissue from Heifer 2, hepatopathy was considered unlikely. Dicoumarol toxicity was suspected, due to feeding silage containing sweet vernal grass.

The remaining three live heifers, Heifers 3, 4 and 6 were treated with 200 mg (approximately 1 mg/kg) vitamin K₁ (Koagulon[®], phytomenadione 10 mg/mL, Parnell Laboratories, New South Wales) given by subcutaneous injection once daily for 3 days. These heifers recovered. The feeding of affected silage had been discontinued on the first day of this investigation and no further cattle presented with signs of toxicity.

Dicoumarol levels
Lithium heparin and plain blood from Heifers 1 and 4 were sent to the Pastoral and Veterinary Institute in Hamilton, Victoria for dicoumarol analysis. Serum and plasma analysis was based on the method of Van den Berg et al.³ Dicoumarol was detected in the serum and plasma samples, control samples
Aspergillus through the action of fungal mould species including examples of herbage species that contain coumarin. Coumarin outer layers of the silage bales.

From these concentrations that the source of the toxin was the ppm in one sample and 51 ppm in another. We can conclude per million (mg/kg). However, in grab samples representing the west Victoria, pastures that are predominantly sweet of sweet vernal was 11% (Quigley PJ, personal communica-

It becomes obvious in pasture in spring and adapts well to soils high rainfall districts and will grow on a wide range of soil types. somet ime prior to 1887. It is most common in moderate to North Africa, sweet vernal grass was introduced into Victoria pasture in south west Victoria. Indigenous to Europe, Asia and

Dicoumarol interferes with synthesis of vitamin K dependent clotting cascade, leading to a delay between ingestion of dicoumarol and signs of disease.7,11 Reported signs of dicoumarol toxicity include subcutaneous swelling, joint swelling, vaginal bleeding, epistaxis, bloody faeces, pale mucous membranes, colic, tachycardia, tachypnoea, abortions, increased umbilical bleeding in calves and death.2,7 Clinicians should be aware that bloat may be another clinical presentation of dicoumarol toxicosis. Both PT and APTT are increased in animals with dicoumarol toxicity.2 Dicoumarol can be detected in serum, plasma and liver of affected animals.10 The feed source should also be tested. In this case, different bales and different areas in the bales had different levels of dicoumarol. While Puschner et al state that levels of dicoumarol less than 20 mg/kg are safe to feed to stock, Radostits et al believe that feeds with more than 10 mg/kg should be viewed with caution.7,10 Feed containing concentrations between 20 mg/kg and 50 mg/kg cause toxic signs if fed consistently for 130 days, and feed containing over 50 mg/kg will cause severe signs when fed for short periods.7 In the current outbreak one sample was measured at 51 mg/kg. Although the silage had a normal dry matter content and the plastic wrapping on the bales did not appear to be damaged, the bales were considerably spoiled with mould on the outer layers. Higher concentrations of dicoumarol were obtained from silage on the spoil outer layers. We recommend that several representative samples be taken, especially the outer layers that are more likely to be affected by moulds.

It was noted that affected yearlings were generally the older and larger ones. One could infer that these stock competed for first access to the bales, eating more of the outer layer of silage spoiled by fungi and with a higher dicoumarol content. When fed to the milking cows, bales were rolled out on the ground. It is likely that only the first layer or two contained toxic levels of dicoumarol. This, coupled with the reduced overall intake of silage compared to the heifers, would account for a lower prevalence of disease in the cows compared to the heifers. The left over silage was fed to the milking cows, however the outer layers were discarded and the silage was fed for 3 days at a time, then not fed for a week. It was also fed as a minor component of their diet (approx 10% of total dry matter intake) to minimise exposure to high levels of dicoumarol. No further cases of toxicosis developed.

Treatment can include blood transfusions, which are generally indicated if PCV falls below 12%.2,12 Animals should be taken off affected feed immediately and stock showing signs should receive vitamin K1. Doses of 1.1, 2.2 and 3.3 mg/kg of vitamin K1 have all been used to treat dicoumarol toxicity.13 Current recommendations are that vitamin K1 be administered at a dosage of 1 to 3 mg/kg every 12 hours for 5 days or until PT and APTT return to normal ranges. The animals in this report were treated once daily for 3 days and had not been exposed to feed for 5 days by the time treatment commenced. The injections were given subcutaneously to minimise injection haematomas. It is recommended that a fine gauge needle and different injection sites be used. Vitamin K3 is not an effective treatment for dicoumarol toxicosis.1,13

<table>
<thead>
<tr>
<th>Blood Test (units)</th>
<th>Heifer 1</th>
<th>Heifer 3</th>
<th>Heifer 4</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCV (%)</td>
<td>0.09</td>
<td>0.26</td>
<td>0.26</td>
<td>0.24 to 0.46</td>
</tr>
<tr>
<td>RBC (10^12/mL)</td>
<td>2.52</td>
<td>6.61</td>
<td>6.44</td>
<td>5.0 to 10.0</td>
</tr>
<tr>
<td>Hb (g/L)</td>
<td>30</td>
<td>95</td>
<td>93</td>
<td>80 to 150</td>
</tr>
<tr>
<td>Platelets</td>
<td>326</td>
<td>Adequate</td>
<td>519</td>
<td>100 to 800</td>
</tr>
<tr>
<td>Plasma protein (g/L)</td>
<td>53</td>
<td>64</td>
<td>62</td>
<td>60 to 85</td>
</tr>
<tr>
<td>Serum protein (g/L)</td>
<td>46</td>
<td>-</td>
<td>-</td>
<td>58 to 80</td>
</tr>
<tr>
<td>PT (seconds)</td>
<td>-</td>
<td>96.4</td>
<td>71.8</td>
<td>11 to 17</td>
</tr>
<tr>
<td>APTT (seconds)</td>
<td>-</td>
<td>> 120</td>
<td>> 120</td>
<td>31 to 50</td>
</tr>
</tbody>
</table>

were negative. The analysis was essentially a qualitative one because dicoumarol is mostly bound to blood proteins making quantitative measurement difficult.5

Laboratory analysis of the silage determined the dry matter content to be 29%. Examination of the bales revealed approximately 90% sweet vernal grass. Most bales were mouldy on the outer layers. Samples of sweet vernal grass from the paddock cut for silage have been catalogued at the National Herbarium of Victoria with reference number 2068475.

A number of representative silage samples were analysed according to the method of Muir et al.® Core samples that represented the bale contained dicoumarol at less than one part per million (mg/kg). However, in grab samples representing the outer layer of silage, dicoumarol was detected at the rate of 21 ppm in one sample and 51 ppm in another. We can conclude from these concentrations that the source of the toxin was the outer layers of the silage bales.

Discussion

Sweet vernal grass is a common grass species in unimproved pasture in south west Victoria. Indigenous to Europe, Asia and North Africa, sweet vernal grass was introduced into Victoria sometime prior to 1887. It is most common in moderate to high rainfall districts and will grow on a wide range of soil types. It becomes obvious in pasture in spring and adapts well to soils of low fertility. In a random survey of 293 pastures carried out in south west Victoria in spring 1989, 47 (16%) contained sweet vernal grass. The content of sweet vernal grass ranged up to 36% (dry matter basis). For the 47 pastures the mean content of sweet vernal was 11% (Q UIGLEY PJ, personal communication). While sweet vernal grass is not a rare pasture species in south west Victoria, pastures that are predominantly sweet vernal grass are rare. It is also uncommon to cut silage off an unimproved paddock. These factors could account for the rarity of the disease.

Sweet vernal grass, sweet clover (Melilotis alba) and many Umbelliferae (for example giant fennel, Ferula communis), are examples of herbage species that contain coumarin. Coumarin can be converted to dicoumarol by dimerisation and oxidation through the action of fungal mould species including Aspergillus, Penicillium and Mucor. Conversion to the toxic metabolite occurs when conditions at hay curing or ensilage, for example excess moisture or aerobic conditions, favour fungal growth.2,3,8,9

Dicoumarol interferes with synthesis of vitamin K dependent coagulation factors: II (prothrombin), VII (proconvertin), IX (Christmas factor) and X (Stuart factor). These clotting factors are involved in coagulation pathways converting prothrombin to thrombin, which in turn causes the polymerisation of fibrinogen molecules to fibrin. Impaired fibrin production results in inadequate stabilisation of platelet plugs, making affected animals subject to both internal and external haemorrhages.10 Clotting factors already present in the blood stream are not affected by dicoumarol and can participate in the clotting cascade, leading to a delay between ingestion of dicoumarol and signs of disease.7,11

Clinicians should be aware that bloat may be another clinical presentation of dicoumarol toxicosis. Both PT and APTT are increased in animals with dicoumarol toxicity.2

Dicoumarol can be detected in serum, plasma and liver of affected animals.10 The feed source should also be tested. In this case, different bales and different areas in the bales had different levels of dicoumarol. While Puschner et al state that levels of dicoumarol less than 20 mg/kg are safe to feed to stock, Radostits et al believe that feeds with more than 10 mg/kg should be viewed with caution.7,10 Feed containing concentrations between 20 mg/kg and 50 mg/kg cause toxic signs if fed consistently for 130 days, and feed containing over 50 mg/kg will cause severe signs when fed for short periods.7 In the current outbreak one sample was measured at 51 mg/kg. Although the silage had a normal dry matter content and the plastic wrapping on the bales did not appear to be damaged, the bales were considerably spoiled with mould on the outer layers. Higher concentrations of dicoumarol were obtained from silage on the spoil outer layers. We recommend that several representative samples be taken, especially the outer layers that are more likely to be affected by moulds.
Unusual ovarian activity in a mare preceding the development of an ovarian granulosa cell tumour

CHOPIN JB, CHOPIN LK, KNOTT LM, DE KRETSER DM and DOWSETT KF

An 8-year-old mare, with a foal at foot, was inseminated on foal heat with frozen semen, with the resultant pregnancy lost between days 34 and 41. The right ovary developed a large anovulatory follicle that was non-responsive to multiple doses of ovulating agents. The follicle eventually appeared to luteinise, although plasma progesterone concentrations did not reflect this. Another follicle developed, responded to GnRH and resulted in a pregnancy from frozen semen that went to term with a healthy foal. When the mare was examined after foaling, the structure on the right ovary appeared to be a granulosa cell tumour; the left ovary was smaller than normal and non-functional. Surgical removal of the right ovary before increasing photoperiod resulted in a return to function of the left ovary and a pregnancy to frozen semen on the second cycle following removal. Figures showing concentrations of inhibin, progesterone, androstenedione, oestradiol and testosterone are presented for this entire period. Unusual ovarian activity in the mare might be a prelude to the development of a granulosa cell tumour.

Aust Vet J 2002;80:32-36

Although rare, benign granulosa cell tumours are one of the most common neoplasms of mares1-3 and may occur at any age.1-3 The diagnosis of most granulosa cell tumours is made after examination of a mare exhibiting unusual behaviour, poor reproductive performance, or an enlarged ovary as an incidental finding on rectal palpation.1,4 A definitive diagnosis is made by the observation of typical histopathological changes.5 Grossly, ovaries affected by granulosa cell tumours are enlarged.5 The cut surface is yellow to gray, exhibiting prominent cystic structures or microcysts.5,6 The contralateral ovary is frequently diminished in size.6-7 Surgical removal is the treatment of choice for granulosa cell tumours, and after surgery many mares return to oestrus, are capable of breeding and behaviour normalises.1,2,4,9 The measurement of hormone concentrations may aid in the diagnosis of granulosa cell tumours. Granulosa cell tumours secrete a range of hormones,10-14 including varying amounts of progesterone, oestrogen, androstenedione and inhibin. In one study, increased plasma inhibin concentrations were observed in 87% of cases and elevated testosterone in 50% of cases.15 Oestrogen concentrations vary considerably, and if elevated are

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>eCG</td>
<td>Equine chorionic gonadotrophin</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotrophin releasing hormone</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinising hormone</td>
</tr>
</tbody>
</table>

References

(Accepted for publication 11 July 2001)